
STATISTICS AND PUBLIC POLICY
, VOL. , NO. , –
https://doi.org/./X..

On the Distribution of Worker Productivity: The Case of Teacher Effectiveness and
Student Achievement

Dan Goldhabera and Richard Startzb

aCenter for Education Data and Research, University of Washington Bothell, Seattle, WA; bDepartment of Economics, University of California,
Santa Barbara, CA

ARTICLE HISTORY
Received January 
Accepted December 

KEYWORDS
Education; Measurement
error; Multivariate analysis;
Non-Gaussian distribution;
Probability density; Robust
procedures; Teacher
productivity

ABSTRACT
It is common to assume that worker productivity is normally distributed, but this assumption is rarely, if
ever, tested. We estimate the distribution of worker productivity, where individual productivity is measured
with error, using the productivity of teachers as an example. We employ a nonparametric density estimator
that explicitly accounts for measurement error using data from the Tennessee STAR experiment, and longi-
tudinal data from North Carolina and Washington. Statistical tests show that the productivity distribution
of teachers is not Gaussian, but the differences from the normal distribution tend to be small. Our findings
confirm the existing empirical evidence that the differences in the effects of individual teachers on student
achievement are large and the assumption that the differences in the upper and lower tails of the teacher
performance distribution are far larger than in the middle of the distribution. Specifically, a 10 percentile
point movement for teachers at the top (90th) or bottom (10th) deciles of the distribution is estimated to
move student achievement by 8–17 student percentile ranks, as compared to a change of 2–7 student per-
centile ranks for a 10 percentile change in teacher productivity in the middle of the distribution.

1. Introduction

By how much does the productivity of one worker within an
occupation vary from the productivity of another worker? We
answer this question for teachers, estimating the distribution of
worker productivity in the form of a probability density. Teacher
productivity, as measured by student outcomes, has been widely
studied, and it is well established that the difference between
high-productivity and low-productivity teachers is quite large,
with long-term implications for student achievement and labor
market outcomes. This observation has led to policy proposals
that intervene at varying points in the probability distribution
of teacher productivity. Most school systems invest significant
resources in professional development, a strategy used to try to
improve the productivity of all teachers, but more recently pol-
icy initiatives have focused on the tails of the distribution: sig-
nificant raises for the best performing teachers and dismissal
for the worst performing teachers. The efficacy of such poli-
cies depends, in part, on the shape of the distribution of teacher
productivity. We estimate a complete productivity distribution
using a nonparametric estimator that corrects for measurement
error and focus on the extent to which the shape of the distribu-
tion differs from the widely held assumption of normality.

CONTACT Dan Goldhaber dgoldhab@u.washington.edu Center for Education Data & Research, University of Washington Bothell,  Bridge Way N, Seattle,
WA .
 Differences between teachers account for about –% in the overall variation in student test achievement (Goldhaber et al. ; Nye et al. ; Rivkin et al. ). The
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There is surprisingly little academic focus on the shape of
the distribution of worker productivity. This is perhaps not
surprising given that most jobs produce multiple outputs so a
focus on only one or two would only capture a slice of employee
production. Only a few studies outside of education estimate
densities of employee productivity. A notable example is Mas
and Moretti (2009), which offers a kernel density estimate for
productivity of supermarket cashiers. Mas and Moretti find
productivity to be very roughly bell-shaped. (See also, Bandiera
et al. 2009 and Paarsch and Shearer 1999.) Density estimates
are now quite common in the teacher effects literature (e.g.,
Boyd et al. 2008; Kane et al. 2008; Goldhaber and Hansen
2013), but these studies do not carefully examine the tails of the
distribution and all make the assumption that the productivity
distribution is Gaussian.

There are several benefits to focusing on public school
teachers in examining the distribution of worker productiv-
ity. First, education is a major industry with K-12 education
expenditures in the United States comprising approximately
4% of GDP. Teachers comprise the single largest college-
educated profession—there are over three million public school
teachers—and they play a vital role in the creation of future
human capital.1 Second, while the productivity of a worker
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always depends on available capital and elements of team
production, teachers are more isolated from other factors of
production than are many other professionals so estimating an
unconditional productivity distribution is meaningful.2

The distribution of teacher productivity is also immediately
relevant in today’s education policy environment. Traditionally,
education policies have been applied broadly across the produc-
tivity spectrum; focusing on rewards for seniority or credentials
and the provision of in-service training (professional devel-
opment). But while it is still not the norm in public schools, a
number of states and local systems have recently implemented
policies tying teacher evaluations to consequential personnel
decisions, some of these involve dismissing the very worst
performing teachers and rewarding the most effective; policies
focused on the tails of the productivity distribution.3

Assuming that productivity is normally distributed, it is rea-
sonable to infer that policies shifting the distribution of effec-
tiveness in the tails of the distribution will have far larger effects
on student achievement than would policies that shift the effec-
tiveness of the average teacher. Traditionally, research on teacher
effects has reported estimates of these effects based on the
assumption that the distribution of productivity is normal.4 A
number of studiesmake the assumption of normality in the con-
text of exploring the implications for students of increases in the
quality of teachers by changing themix of people in the teaching
profession through firing, layoffs, or non-tenuring teachers, or
through retention bonuses.5 Chetty et al. (2014b), for instance,
considered the implications of Hanushek’s (2009) hypothetical
that teachers in the bottom 5% of the value-added distribution
be dismissed (with the assumption that they could be replaced
by teachers of average quality). Based on their findings on the
impacts of teacher quality on adult earnings, they present a back-
of-the-envelope calculation that substituting an average teacher
for a bottom 5% teacher would increase the present value of
average lifetime earnings of a student by $14,500. (The average

 This is likely to be particularly true at the elementary level (our focus), where team
production is minimal because most teachers are responsible for the instruction
of a classroomof students throughout themajority of the day. Jackson and Brueg-
mann () found, at the elementary level, that increases in the value added of a
given teacher’s peers in a school has a small spillover impact on the achievement
of students in that teacher’s classroom. But the magnitude of this spillover effect
is relatively small when compared to the overall magnitude of teachers’ individ-
ual contributions to student learning. Additionally, evidence on the portability of
the effectiveness across contexts (grades and schools) also suggests limited team
production (Bacher-Hicks et al. ; Chetty et al. a).

 High-stakes uses of output-based measures of teacher productivity have been
spurred by such federal initiatives as the Race to the Top and Teacher Incentive
Fundgrant competitions. For simulation evidence onhow influencing the compo-
sition of the teacher workforce might affect its overall productivity, see Hanushek
(), Goldhaber and Hansen (), Chetty et al. (b), and Rothstein ();
seeGoldhaber () onwhy such simulations could result inmisleadingestimates
of the effects of workforce composition policies.

 In a review of the effects of teacher effectiveness, Hanushek and Rivkin () sug-
gested that the effect of a one standard deviation change in teacher effectiveness,
based onmodels that include school fixed effects (so arewithin school estimates),
are in the range of .–.% of a standard deviation of student achievement.
Estimates that do not include school effects and therefore assign differences in
schools to teachers, tend to be larger, in the neighborhood of .–% of a stan-
dard deviation (Aaronson et al. ; Goldhaber and Theobald ; Kane and
Staiger ). The estimates we describe below are consistent with this range,
with the exceptionof Tennesseewhere the estimated effects are somewhat larger.

 See, for instance: Chetty et al. (b), Hanushek (), and Rothstein () on
teacher dismissals; Goldhaber and Hansen () and McCaffrey et al. () on
selective tenuring; Boydet al. () andGoldhaber andTheobald () on layoffs;
and Chetty et al. (b) and Rothstein () on selective retention bonuses.

class size in Chetty et. al. was 28.2, so the total net present value
of the replacement is estimated to be $407,000.) This, along
with other simulations in the published literature, assumes that
teacher quality follows a Gaussian distribution.6

The assumption of normality is convenient—most policy
questions can then be settled by just knowing the standard devi-
ation of teacher productivity measured in units of student out-
comes.While it is fairly standard to assume thatmost social psy-
chological variables are normally distributed in the population
(often by construction), as Mayer (1960) notes, “…there is lit-
tle reason to assume that ability is in fact normally distributed”
(p. 189). We are only aware of one paper (Pereda-Fernández
2016) that investigates the potential that the distribution of
teacher effects is nonnormal. This work relies on estimating
higher-order moments of residuals to detect departures from
normality and finds that the distribution of teacher effects is
slightly skewed and platykurtic (i.e., it has fatter tails).7

Our interest in the shape of the productivity distribution
calls for use of a nonparametric density estimate so that the
shape of the distribution is determined empirically rather than
by assumption. We present a formal statistical test for normal-
ity. Normality is very strongly rejected, but the rejection largely
reflects the large samples and the power of the test. While the
distribution of teacher productivity could be heavily skewed or
multi-modal, etc., in fact, the distribution looks much like a bell
curve—just not a bell curve that is Gaussian (nor t-); the differ-
ence is in the tails rather than in the overall shape.

Consistent with the broader literature, we find that the dif-
ference in terms of student achievement between effective and
ineffective teachers is quite large. When we focus on what hap-
pens at different points in the productivity distribution, asking
the question “what happens when you replace a teacher with a
given productivity with a teacher who performs at a level 10 per-
centile points higher in the teacher productivity distribution,”
our estimates illustrate the differential impact that teachers at the
extremes have on student achievement from those in the mid-
dle of the distribution. Figure 1 offers a visual summary of our
key findings illustrated with math scores from North Carolina.
The plot links teacher percentiles on the horizontal axis to stu-
dent percentiles on the vertical axis. The lines show the effect of
movement across the tails versus movement in the center of the
distribution—the former lines beingmuch steeper. An improve-
ment of teacher effectiveness at the bottom (moving from the
2nd to the 12th percentile) or top (moving from the 88th to the
98th percentile) tends to be associated with a change in student
achievement of about 13 student percentiles, versus a compara-
bly sized change in teacher productivity near the median of the
distribution (moving from the 45th to 55th decile), which is gen-
erally associated with a change in student achievement of about
four student percentiles.

A second methodological issue that arises in estimat-
ing teacher productivity is that the estimates of individual

 See Equation () andOnlineAppendixDof theChetty et al. () study for details
about the simulation; and particularly p. , where Chetty et al. said “Under the
assumption that [value added] is normally distributed.

 Pereda-Fernández () differed substantively from our approach in that the
author uses test score levels rather than the value-added approach that we fol-
low and limits the sample to kindergarten. The paper also offers a novel approach
to measuring spillover effects, an issue that we do not address.
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Figure . Student gain associated with improvement in teacher productivity.

productivity include measurement error, which is ignored by
standard nonparametric techniques. To oversimplify slightly,
point estimates of value added for an individual teacher are
least-squares regression coefficients on teacher indicator vari-
ables in what can be thought of as an educational production
function. The point estimate for the jth teacher, δ̂ j, consists of
the true level of productivity, δ j, plus an approximately normally
distributed sampling error, ν j, with standard deviation σν j . The
observed dispersion of estimated productivity, σ̂

δ̂
, overstates the

true dispersion, σδ , precisely because the observed dispersion
includes the sampling error (Rockoff 2004). When parametric
estimates are made, it is therefore commonplace in the teacher
effectiveness literature to use empirical Bayes shrinkage (Aaron-
son et al. 2007) methods to account for sampling error. This
shrinkage process, however, assumes normality and generally
shrinks all estimates by an equal proportion without distinction
between the length of the tails versus the center of the distri-
bution (Guarino et al. 2015; Mehta 2015). Since we care about
getting the shape right, we employ a recent method from the
statistics literature, Delaigle and Meister (2008a, 2008b) that
is intended precisely to give a nonparametric density estimate
when the observed data points are subject to heteroscedastic
error.

We conduct our empirical analysis on three separate datasets:
the widely used data from the Tennessee STAR experiment, and
longitudinal data from North Carolina and Washington State.
We carry out the analysis across multiple sites in order to assess
the extent to which our findings generalize across experimen-
tal and nonexperimental settings, different educational contexts
and grades. While there are some differences in the estimates,
for example, larger estimated teacher effects in earlier grades,
the findings are remarkably robust across datasets in showing
differential marginal productivity in the tails of the distribution.

2. Methodological Approach to Density Estimation

Density estimation is a two-step process in which we first
estimate individual teacher effects and then generate a
nonparametric density estimate from the individual teacher

estimates.8 We observe i = 1, . . . , n students assigned to
j = 1, . . . , J teachers in subject s, and we let I(i,t )∈ j be an
indicator variable for whether student i is assigned to teacher j
at time t. If Ai,s,t is an outcome measure of interest, for example,
a test score, then we can write

Ai,s,t =
3∑

p=1

λp A
p
i,s,t−1 + δ1I(i,t )∈1 + · · · + δJ I(i,t )∈J + Xi,tβ + εi,t ,

(1)

where X is a set of student covariates, Ap
i,s,t−1 is a cubic poly-

nomial of lagged test scores in one or more subjects, and ε is a
random error.

Some researchers also add a school fixed effect to
Equation (1), hence measuring the impact of teacher effec-
tiveness within school. But this attributes any mean differences
in the quality of teachers who are employed in different schools
to the school effect as opposed to teachers, which is potentially
problematic if schools are able to hire teachers of differing
average abilities.9 This may be particularly important when
investigating the tails of the distribution given that schools
have quite different applicant pools (e.g., Gross et al. 2010).
For this reason, and because recent research suggests that
teacher productivity is transferable across schools (Xu et al.
2012; Glazerman et al. 2013; Chetty et al. 2014b), our preferred
specification omits school fixed effects. However, our findings
are quite similar if we instead include school effects.10

The estimates δ̂ j can be regarded as the true δ j plus sam-
pling error. The central goal in the article is to determine the
underlying random density of the δ j ’s, which we do with a non-
parametric estimator. Since δ̂ j is simply a regression coefficient,
under reasonable assumptions, the sampling error is approxi-
mately normal. The methodological problem is that the disper-
sion of the observed δ̂ j, which includes sampling error v j, exag-
gerates the dispersion of δ j, σ̂ 2

δ̂
≈ σ 2

δ + 1
J
∑J

j = 1 σ 2
ν j
.11 Since σ̂ 2

δ̂

and σ 2
ν j
are estimable, it is possible to back out an estimate of σ 2

δ .
This “backing out” is essentially what empirical Bayes estimators
do.12

 Teacher effects can be estimated on a yearly basis, but then cannot be distin-
guished from classroom effects. As we discuss below, we estimate both teacher
effects using multiple years of teacher (as many as are available for each teacher)
data and yearly teacher–classroom effects. Given the increase in the precision of
the estimates, our preferred specification is one that includes multiple years of
teacher data, but our findings are qualitatively similar if instead we use teacher–
classroom–year effects.

 It is also possible, with panel data, to identify school level effects based on teach-
erswhomove fromone school to another, but this formof identification also relies
on strongassumptions, such as teachers being equally effective in different school
contexts.

 The Tennessee STAR data only includes  year of data so the only way to estimate
specifications that include a school effect for this dataset is to exclude a hold out
teacher for each school. Another alternative is to estimate teacher effects in two
stages, first regressing student achievement on student covariates and class size
and then using the residuals to estimate teacher effects. The correlation in the
Tennesseedatabetween theone-stage and two-stage teacher effects is very high,
over ..

 This requires δ j and ν j to be uncorrelated,which should be the case froma regres-
sion. However, the two need not be independent. In fact, higher moments are
likely correlated for reasons offered below.

 Empirical Bayes (EB) methods (e.g., Aaronson et al. ) impose parametric
assumptions—in practice they impose normal distributions, which is precisely
what we wish to avoid. Note too that shrinking estimates and then using a non-
parametric density estimate is not appropriate because shrinkage reduces mean
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If the errors in Equation (1) are homoscedastic, then the error
variance estimated from the standard errors on the regression
coefficients on the teacher dummy variables will be—roughly—
inversely proportional to the square root of the number of stu-
dents of teacher j, √nj, and therefore heteroscedastic. Novice
teachers are generally lower performers than are more experi-
enced teachers (Kane and Staiger 2002; Rockoff 2004), and nj
is typically smaller for novice teachers in the North Carolina
and Washington datasets. Thus, δ and σ 2

ν j
may not be indepen-

dent. In particular, failing to account formeasurement errormay
cause a particular problem in estimating the shape of the lower
tail of the distribution.

The second reason that sampling error can vary is that some
classes are more heterogeneous than others. Suppose that the
error variance, σ 2

εi
, varies across students. The variance of δ̂ j will

be roughly proportional to
∑

i∈ j σ
2
εi
/nj. We use White robust

standard errors to accommodate possible heteroskedasticity,
despite the fact that nj is sometimes smaller than is desirable
from the point of view of consistency arguments.

Given a point estimate and standard error for each teacher, we
take advantage of recent advances in the statistics literature and
use the algorithm for nonparametric density estimation in the
presence of measurement error described in Delaigle and Meis-
ter (2008a,b).13 This method is designed precisely to compute
a nonparametric density estimate from data that include het-
eroskedastic errors. Standard nonparametric kernel density esti-
mates calculate empirical densities by counting up the fraction
of data points near a given x-ordinate while down-weighting the
points further from the ordinate. The D–M algorithm increases
the down-weighting for observations with larger measurement
error. As with standard kernel density estimates, the D–M algo-
rithm computes a discrete approximation, f (xl ), to the density
at a specified set of grid points. We use L = 200 grid points
xl uniformly distributed on [min(δ̂ j),max(δ̂ j)], where f (•) is
rescaled so that

∑L
l = 1 f (xl ) × �x = 1, and where �x is the

distance between grid points.
Smoothed densities are themselves statistical estimates.

There may be concern about the accuracy of the location of per-
centiles in the tails of the distribution precisely because rela-
tively few observations fall in the tail. We adopt the following
bootstrap strategy to compute confidence intervals. We resam-
ple the data with replacement 1000 times to produce 1000 esti-
mates of (δ̂ j, σ̂δ j ), holding the bandwidth constant at the band-
width used for the original sample.14 We apply the Delaigle
andMeister deconvolution estimator to each resample. For each
bootstrap sample, we compute the impact of a one standard
deviation improvement in teacher quality and report the 5th
and 95th percentiles of the bootstrap sample as confidence
intervals.

square error but does not eliminatemeasurement error. In addition, there is some
evidence that this practice leads to biased estimates of teacher effectiveness
(Demming ; Guarino et al. ).

 We use the plug-in bandwidth estimator suggested by Delaigle and Gijbels
(, ). The code implementation, due to Aurore Delaigle, is available at
http://www.ms.unimelb.edu.au/∼aurored/links.html#Code. For further exposition,
see also Meister (), p. ff. See also Delaigle, Hall, and Meister () for
related work.

 Hall and Kang () examined a closely related smoother bootstrap and suggest
that holding the bandwidth constant is appropriate.

In order to test the distributions for normality we use a
modified Kolmogorov–Smirnov (KS) statistic. For each D-M
smoothed density we compute sample mean and variancem =∑n

i=1
∑L

l=1 xl f (xl )�x, v = ∑n
i=1

∑L
l=1 (xl − m)2 f (xl )�x.

We then compute the KS statistic as D = maxl |F(xl )
− 	(xl;m, v )|, where F(xl ) is the cumulative distribution
function and 	(•) is the normal cdf with meanm and variance
v . To obtain critical values under the null of normality, we
generate 2000 Monte Carlo draws of artificial data drawn from
N(m, v ) of length equal to the number of teachers in the real
sample and apply the D–M smoother to each artificial sample.
We then tabulate the Monte Carlo values of D to find critical
values for the real sample. As we report below, the null of
normality is rejected because of the thickness of the tails of the
distribution.

We associate each teacher percentile with adjusted student
gains. To calculate the adjusted student gains, we subtract the
products of the test score variables (lagged math and reading
scores, with squared and cubed terms) and their associated coef-
ficients from the value-added model defined in Equation (1)
from the current-year test score:

Adjusted Gaini,s = Ai,s,t −
3∑

p = 1

λpA
p
i,s,t−1 (2)

3. Data

Each of the three datasets we employ has advantages and
disadvantages. The advantage of the STAR data is that
there is random assignment of students to classrooms and
teachers within schools, eliminating a potential source of
bias in the estimation of teacher effectiveness (Rothstein
2010). STAR, however, includes a relatively small sample of
teachers and students in early grades only, each teacher is
observed only once, and the findings may not be generalizable
(Hanushek 1999).

The advantage of using data fromNorth Carolina andWash-
ington is that each state database includes a large, longitudi-
nal sample of teachers and students, a rich set of covariates on
students, multiple classroom observations on individual teach-
ers, and the data are more current than STAR. The disadvan-
tage of the observational data from these states is that, unlike
the STAR experiment, students in North Carolina and Wash-
ington are not randomly assigned to teachers. Given this, it
is necessary to estimate value-added models to obtain teacher
effect estimates, and there is the usual risk that covariate adjust-
ments fail to account for aspects of the process that leads to
student-teacher matches that may be correlated with student
achievement.15

The value-added models that we estimate include prior-year
math and reading standardized test scores, free/reduced price
lunch status, special education/learning disability status, gen-
der, race/ethnicity, and grade indicators as predictors for all sites;

 There is somedisagreement in the field about the extent towhich this adjustment
approach results in unbiased teacher effect estimates. See, for instance, Amrein-
Beardsley (), Chetty et al. (a), Goldhaber and Chaplin (), Kane and
Staiger (), Kane et al. (), and Rothstein (, , ).

http://www.ms.unimelb.edu.au/aurored/links.html\043Code
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however, specific variable definitions are not completely consis-
tent across sites. For North Carolina and Washington, we also
include limited English proficiency and for North Carolina we
also include parental education.

3.1. Tennessee STARData

The Tennessee STAR experiment was primarily designed to
answer questions about the efficacy of reduction in class
size.16,17 The experiment followed a single cohort from kinder-
garten through third grade. Students were randomly assigned
within schools to “regular” classes of approximately 24 students,
“small” classes of approximately 16 students, or “regular-with-
aide” classes of approximately 24 students. For a variety of rea-
sons, the randomization was imperfect (Hanushek 1999), but
has still been judged to be useful for studying teacher and class
effects.18 Teachers in STAR are only observed once so class and
teacher effects are not separately identified. Test scores in STAR
are designed to be vertically aligned.We take original test scores
and standardize by subtracting the mean and dividing by the
standard deviation for each grade-year.

3.2. North Carolina andWashington Data

Both the North Carolina and Washington datasets have been
usedwidely for investigating teacher policy issues.19 The admin-
istrative data in North Carolina are from the North Carolina
Department of Public Instruction, and are compiled and man-
aged by Duke University’s North Carolina Education Research
Data Center. The data from Washington are from the Office
of the Superintendent of Public Instruction. In each state, the
data include information on student achievement on standard-
ized tests in math and reading that are administered as part
of each state’s accountability system, and, importantly for our
purposes, in each state teachers and students can be linked
together, enabling the estimation of teachers’ value added.20
We normalize student achievement growth within grade and
year, as with the STAR data. The data also include information

 For examples of studies using the STAR data, see, for instance: Chetty et al. ();
Finn et al. (); Folger (); Krueger (); Word et al. ().

 Krueger () gives some indirect estimates connecting improvements in the
Stanford Achievement Tests to later earnings. Chetty et. al. () linked kinder-
garten test scores to young adult earnings.

 Krueger (), for instance, wrote, “The implementation of the STAR experiment
was not flawless, but my reanalysis suggests that the flaws in the experiment did
not jeopardize its main results.”

 For instance, see, in the case of North Carolina, Clotfelter et al. (, ), Gold-
haber and Hansen (), Rothstein (). And, in the case of Washington, Gold-
haber, and Theobald (), Goldhaber et al. (a,c), and Krieg ().

TheNorth Carolina data do not explicitlymatch students to their classroom teach-
ers, it identifies the person administering the class’s end-of-grade tests. At the
elementary level, the majority of those administering the test are likely the class-
room teacher; however, as we describe below, we also take several precautionary
measures to reduce the possibility of inaccurately matching non-teacher proc-
tors to students. In Washington, the proctor of the state assessment was used as
the teacher–student link for – through –. The “proctor” vari-
able was not intended to be a link between students and their classroom teach-
ers so this linkmay not accurately identify those classroom teachers. However, the
state’s new Comprehensive Education Data and Research System (CEDARS) con-
tains aunique course ID that allowsdirectmatchingof students and teachers since
–.

about student demographics (e.g., free/reduced price lunch sta-
tus, race/ethnicity, etc.) that are used in the estimation of the
value-added models described above.

We use data for teachers and students from school years
1995–1996 through 2004–2005 in North Carolina and 2006–
2007 through 2012–2013 in Washington. In each state, we only
include students who have valid math or reading pre- and post-
test scores. We also restrict our analytic samples to elementary
schools (grades 3–5 in North Carolina and 4–6 inWashington),
and in ways designed to ensure that the person identified as
the proctor of an exam is in fact a student’s classroom teacher.
Specifically, we restrict the data to self-contained, non-specialty
classes, and only include teacherswho are assigned to reasonable
class sizes, and we only include those student–teacher matches
in which the person identified as the proctor has credentials and
school and classroom assignments that are consistent with their
teaching the specified grade and class for which they proctored
the exam.21

3.3. Sample Statistics

The above restrictions result in samples of 13,586 student–year
observations (6591 unique students) and 793 teacher obser-
vations in STAR (teachers in STAR are only observed once);
1,791,228 student–year observations and 87,604 teacher–year
observations (24,707 unique teachers) in North Carolina; and
771,190 student–year observations and 35,518 teacher–year
(11,826 unique teachers) observations in Washington.

Table 1 reports sample statistics for select variables by site
at the student–year level, with and without the sample restric-
tions described above. Across all three sites the restricted sam-
ple of students is somewhat more advantaged as measured by
free/reduced price lunch status and student achievement. This
is not surprising given that low income and low achieving stu-
dents are more likely to be mobile and therefore less likely to
have both a base year and follow-up test score, a requirement to
be in the sample.

4. Results

While we are primarily interested in the shape of the produc-
tivity distribution, a few intermediate results warrant mention.
Supplemental Table A-2 shows selected coefficient estimates
from the models used to derive teacher value added. The esti-
mated coefficients across the different sites are quite consistent.
The coefficient estimates on prior test scores in the same subject
are typically in the range of 0.50–0.70, but, consistent with prior
literature (e.g., Goldhaber et al. 2013a, 2013b; Johnson et al.
2015), cross-subject tests also predict gains in both math and
reading. And, again consistent with prior literature (e.g., Rivkin
et al. 2005; Boyd et al. 2006; Goldhaber 2006, 2007; Clotfelter

 In keeping with common practice in the literature, we require at least ten stu-
dents to be in the teacher’s class each year. We set amaximum class size of  stu-
dents in North Carolina because that is the maximum allowed by state law, but
allow amore lenient maximum class size of  in Washington State because max-
imum class sizes are negotiated at the district level inWashington. Themaximum
observed class size under STAR is  students. These restrictions make little differ-
ence in our samples, only % of classrooms are dropped due to this restriction in
the STAR dataset and % in North Carolina and Washington.
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Table . Descriptive statistics of student characteristics, by site.

STAR NC WA

Unrestricted Restricted Unrestricted Restricted Unrestricted Restricted

Standardized Math Score . . . . . .
(.) (.) (.) (.) (.) (.)

Standardized Reading Score . . . . . .
(.) (.) (.) (.) (.) (.)

Lagged Math Score . . . . . .
(.) (.) (.) (.) (.) (.)

Lagged Reading Score . . . . . .
(.) (.) (.) (.) (.) (.)

Free/Reduced Price Lunch . . . . . .
(.) (.) (.) (.) (.) (.)

Special Ed/Learning Disability . . . . . .
(.) (.) (.) (.) (.) (.)

White . . . . . .
(.) (.) (.) (.) (.) (.)

Minority . . . . . .
(.) (.) (.) (.) (.) (.)

Female . . . . . .
(.) (.) (.) (.) (.) (.)

N (teachers) ,  , , , ,
N (teacher–years) ,  , , , ,
N (students) ,  ,, , , ,
N (student–years) , , ,, ,, ,, ,

NOTE: Standard deviations in parentheses. Students are only included in restricted sample if they have a current and prior-year test score. Teachers are only included in
the restricted sample if they are coded as a regular classroom elementary teacher and have at least  valid students.

et al. 2008, 2010), students eligible for free or reduced price lunch
have test scores that are lower by 7–12% of a standard deviation,
special education students and those who are identified as hav-
ing specific learning disabilities also performmore poorly as do
African–American students.

As signaled above, we find that the distribution of teacher
productivity is non-Gaussian. In this vein, Table 2 reports both
estimates of kurtosis and the results of a formal test for normal-
ity. D–M estimates of kurtosis are around four for math and
four-and-a-half to five for reading. (The D–M correction for
measurement error leads to slightly higher kurtosis estimates.)
In order to help think about the level of leptokurtosis reported
in Table 2, kurtosis equal to 4 corresponds to a t- distribution

Table . Characteristics of teacher effectiveness distribution.

Panel A. Math STAR NC WA

Effect sizes
Unadjusted . . .
EB Adjusted . . .
D-M Adjusted . . .

Skewness (unadjusted) . . .
Skewness (D-M adjusted) . − . .
Kurtosis (unadjusted) . . .
Kurtosis (D-M adjusted) . . .
Modified KS p-value . . .
N   
Panel B. Reading
Effect sizes
Unadjusted . . .
EB Adjusted . . .
D-M Adjusted . . .

Skewness (unadjusted) − . − . .
Skewness (D-M adjusted) − . − . .
Kurtosis (unadjusted) . . .
Kurtosis (D-M adjusted) . . .
Modified KS p-value . . .
N   

NOTE: Effect sizes represent the effect of a one standard deviation change in
teacher effectiveness on student achievement.

with 10 degrees of freedom and kurtosis equal to 5 corresponds
to 7 degrees of freedom.

Normality would permit a simple description of the produc-
tivity distribution, but the Kolmogorov–Smirnov test, reported
in Table 2, strongly rejects a normal distribution for each site in
our study. Contingent on the degree to which the productivity
distribution diverges from normality, this could have important
policy implications. There is, for instance, work suggesting that
policy interventions that focus on the tails of the teacher produc-
tivity distribution could have dramatic impacts on student test
achievement and later life outcomes (e.g., Chetty et al. 2014b;
Hanushek 2009), but the assumption of normality may lead to
an under- or overstatement of the importance of very effective
or ineffective teachers.

It is traditional to use a one standard deviation change in
teacher effectiveness as the definition of an “effect size.” Even
though we find that the standard deviation is not a sufficient
statistic to describe the teacher effectiveness distribution, we
show standard deviations in Table 2. For each site, we report
both unadjusted estimates of a one standard deviation change
in teacher quality, as well as estimates of the effect sizes that
are adjusted for estimation error using the Delaigle and Meister
approach and empirical Bayes shrunken estimates.22 The esti-
mated impacts on student achievement are comparable to those
previously estimated in these sites (Nye et al. 2004; Rothstein
2010; Goldhaber et al. 2013a). And, also consistent with prior
research (e.g., Kane and Staiger 2012; Lefgren and Sims 2012;
Goldhaber et al. 2013b), there is a higher variance in the distri-
bution of teacher quality in math relative to reading.

As is apparent from the table, the approach taken to
adjust for measurement error—Delaigle and Meister (DM) or

 Following Aaronson et al. (), we estimate the variance of ν j with the mean
of the standard errors across all fixed effects. We use heteroskedasticity-robust
standard errors of the fixed effects.
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empirical Bayes (EB)—makes only a small difference in the esti-
mated impact of a one standard deviation change in teacher
quality. The estimated effects inNorthCarolina andWashington
shrink more noticeably under each adjustment type when they
are based on only a year’s worth of matched teacher student data
(reported in Table A-1 in the online supplemental material), as
would be expected given that the signal-to-noise ratio is lower
with only a year’s worth of data (McCaffrey et al. 2009; Gold-
haber and Hansen 2013).23

One striking finding is that the estimated teacher effects are
far larger in the STAR data than in either of the other states.24,25
One possible explanation is that this reflects the fact that the
STAR teacher effects are 1-year teacher-classroomeffects (teach-
ers are observed for a single year and class only), and these will
be subject to greater measurement error. This, however, does
not appear to be the explanation: the 1-year estimates from
North Carolina and Washington (see Table A-1 in the online
supplemental material) are slightly larger but not anywhere near
the magnitude of the STAR findings. Another possibility is that
STAR creates heterogeneously sized classrooms by design, and
this will suggest greater classroom–teacher effects as a conse-
quence of the purposeful assignment of teachers to different
sized classes (Pereda-Fernández 2016).26 As a check, we esti-
mate teacher effects using a two-stage process in which we con-
trol for class size—first regressing student achievement on stu-
dent covariates and class size and then using the residuals to
estimate teacher effects. The estimated impacts are essentially
unchanged.

It is also possible that there is differential-less selection of
students into classrooms in STAR than in the state samples. If
there are compensating matches between teacher effectiveness
and unobserved student academic ability in the sense that the
more effective teachers tend to be matched with students who
are likely to struggle and vice versa, then the teacher effect esti-
mates in the state samples (but not STARwhere students are ran-
domly assigned to classes) would understate the true impact of
teachers. Unfortunately we cannot directly test for this possibil-
ity, but it seems quite unlikely as most academic evidence sug-
gests that more advantaged students tend to be assigned tomore
effective and qualified teachers (e.g., Kalogrides and Loeb 2013;
Goldhaber et al. 2015).

Another plausible explanation is that the larger STAR effects
are due to the fact that they are based on achievement in ear-
lier grades. Teachers may appear to have larger estimated effects
on students in early grades due to growth in the accumula-
tion of knowledge over time and what is tested as student’s
progress through school (Cascio and Staiger 2012). Lipsey et al.
(2012), for instance, report that the mean achievement gains for

Note that the STAR teacher effects are based on a single year so there is no analog
to the single versusmulti-year effect estimates that can be derived from theNorth
Carolina and Washington datasets.

This is consistent with other research estimating the variance of teacher effects
using the STAR data (Hanushek and Rivken ; Nye et al. ).

 It is interesting to compare STAR effect sizes here to those in Pereda-Fernández
(), despite the differences in the sample and the use of value added. We esti-
mated a math effect size of .. As an example (Table  column ()), Pereda–
Fernández estimates a direct effect of . and a socialmultiplier of . (bothwith
large standard errors) which would give a point estimate of .—fairly close to
what we find.

About % of class sizes in the analytic sample are less than  students in STAR
as compared to % in North Carolina and % in Washington.

students, across seven nationally normed, longitudinally scaled
achievement tests, shrinks substantially as students advance
from one grade to the next.27 For instance, the mean growth
in math and reading test achievement between first and sec-
ond grade is approximately a full standard deviation, whereas
the mean growth between 5th and 6th grade is about a third
of a standard deviation in reading and 40% of a standard devi-
ation in math. Consequently, the effects of changes in teacher
quality in Table 2, translated into months of student learning,
do not appear very different in STAR from the two other sites
once teacher effects are translated into typical months of student
learning.28

We turn now to our primary results on productivity. Table 3
provides point estimates of the distribution of productivity
accounting for heteroskedastic error in Panel A (comparable
results for the single year estimates are available upon request).
Each row identifies the percentiles of adjusted student achieve-
ment gains for a teacher at a given point in the distribution of
teacher productivity, where the teacher percentile represents a
position in theDM-based estimated distribution and the student
percentiles are from the distribution of student value added.
The teacher and student distributions are commensurable in the
sense that both are mappings from test score measures to per-
centiles. We match teacher and student percentiles by reverse
mapping the teacher percentile to a test score measure and then
mapping that test score measure to the corresponding student
percentile. Our findings are generally not all that different from
what would be expected from a normal distribution (the corre-
sponding percentiles for a normal distribution are reported in
the angle brackets in the table).

As is common in estimates of teacher effects, the distribution
shows considerable dispersion. As examples, if a school district
were able to hire a 98th percentile teacher to replace a median
teacher, this would move student achievement from a low esti-
mate of 18 percentile points according to the North Carolina
reading results (48th to 66th student percentiles) to a high of
42 percentile points according to the STARmath results (51st to
93rd percentiles). These are all large substantive effects.

Figure 1 provided visual evidence that differences inmarginal
effectiveness in the lower and upper tails are far larger than in the
middle of the distribution, using North Carolina math scores.
Table 4 restates the evidence numerically, showing the differ-
ence in the point estimates given in Table 2 and adding confi-
dence intervals for the differences. A 10 percentile movement
across the teacher productivity distribution has two-and-a-half
to three-and-a-half times the effect on output, as measured by
student test percentiles, in the tails of the distribution as does
the same movement in the middle of the distribution. We give
95% confidence intervals from the bootstrap described above (in
Section 2) in parentheses. The confidence intervals suggest that
the estimated effects of movements in different parts of the dis-
tribution are estimated with reasonable precision. The numbers

Whereas the within grade variance in test performance tends to rise as students
advance from one grade to the next.

We convert to months of schooling by dividing the effect sizes by the average
grade and subject gains for the grades in each site (from Table  of Lipsey et al.
) to obtain an equivalent proportion of a school year, and then multiply this
number by , assuming that most school years are  months. The effect sizes in
STAR translate into a difference of about . months, whereas they translate into
. months in North Carolina and . months in Washington.
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Table . Teacher productivity percentiles versus student achievement gains percentiles, with % confidence intervals.

STAR NC WA

Percentile Math Reading Math Reading Math Reading

 . . . . . .
(.,.) (.,.) (.,.) (.,.) (.,.) (,.)
〈.〉 〈.〉 〈.〉 〈.〉 〈.〉 〈.〉

  . . . . 
(.,.) (.,.) (.,.) (.,.) (.,.) (.,.)

〈.〉 〈.〉 〈.〉 〈.〉 〈.〉 〈.〉
 . . .  . .

(,.) (.,.) (.,.) (.,.) (,.) (.,.)
〈.〉 〈.〉 〈.〉 〈.〉 〈.〉 〈.〉

 . . . . . .
(.,.) (,.) (.,.) (.,.) (.,.) (.,.)

〈.〉 〈.〉 〈.〉 〈.〉 〈.〉 〈.〉
 . . . . . .

(.,.) (.,.) (.,.) (.,.) (,.) (.,)
〈.〉 〈.〉 〈.〉 〈.〉 〈.〉 〈.〉

 . .  . . .
(.,.) (.,.) (.,.) (.,.) (.,.) (.,.)

〈.〉 〈.〉 〈.〉 〈.〉 〈.〉 〈〉
 . . .   .

(.,.) (.,.) (.,.) (.,.) (.,.) (.,.)
〈.〉 〈.〉 〈.〉 〈.〉 〈.〉 〈.〉

 . . . . . 
(,.) (.,.) (.,.) (.,.) (.,.) (.,.)
〈.〉 〈.〉 〈.〉 〈.〉 〈.〉 〈.〉

 .  . . . .
(.,.) (.,.) (.,.) (.,.) (.,.) (.,.)

〈.〉 〈〉 〈.〉 〈.〉 〈.〉 〈.〉
 . . . . . .

(.,.) (.,.) (.,.) (.,.) (.,.) (.,)
〈.〉 〈.〉 〈.〉 〈〉 〈.〉 〈.〉

 . .  . . .
(,.) (.,.) (.,.) (.,.) (.,.) (,.)
〈.〉 〈〉 〈.〉 〈〉 〈.〉 〈.〉

NOTE: Rows give the percentile of student achievementmeasured by value added for the indicated point in the teacher productivity distribution. For example, a teacher at
the nd percentile of productivity on student achievement inmath in the STAR data has amean student outcome at the .rd percentile of student gains. % confidence
intervals appear in parentheses and corresponding percentiles for a normal distribution in angle brackets.

given in angle brackets show what the estimated effects would
be if the productivity distributions were normal with means and
standard deviations shown in Table 4. Importantly, while we
reject normality, the nonparametric distributionswe estimate do
not depart appreciably from normality across all sites and both
subjects.

5. Policy Implications and Conclusions

The standard assumption of policy analysts is that the distribu-
tion of employee productivity is normal. Prior to our study, this

assumption has not been empirically verified. As we show, the
distribution of teacher effectiveness departs from the Gaussian,
but not significantly, suggesting that the assumption of normal-
ity in estimating the implications of productivity initiatives that
target different points in the distribution is reasonably well eval-
uated by assuming the distribution to be Gaussian. And, consis-
tent with existing literature, we find that teachers can have a very
large effect on student outcomes.

The fact that the estimated effects of teacher quality are
not uniform across the productivity distribution has important
implications for teacher policy. For instance, some new teacher
policy initiatives focus on selective recruitment and retention

Table . Effect of  percentile movement across the productivity distribution.

STAR NC WA

Percentiles Math Reading Math Reading Math Reading

–  . . . . .
(.,.) (.,.) (,) (.,.) (.,.) (.,.)

〈.〉 〈.〉 〈.〉 〈.〉 〈.〉 〈.〉
– . . . . . .

(.,.) (.,.) (.,.) (.,.) (.,.) (.,.)
〈.〉 〈.〉 〈.〉 〈.〉 〈.〉 〈.〉

–  . . . . .
(.,.) (.,) (.,.) (.,.) (,.) (.,.)

〈.〉 〈.〉 〈.〉 〈.〉 〈.〉 〈.〉
NOTE: % confidence intervals in parentheses; corresponding effect for a normal distribution in angle brackets.
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Table . Value of replacing teachers across the productivity distribution.

STAR NC WA

Math Reading Math Reading Math Reading

Replacing teacher at the nd percentile with a teacher at the th percentile DM $, $, $, $, $, $,
Gaussian $, $, $, $, $, $,

Replacing teacher from the bottom %with an average teacher DM $, $, $, $, $, $,
Gaussian $, $, $, $, $, $,

NOTE: Based on calculation from Chetty et al. () and assuming . standard deviation change from nd to th percentile with a Gaussian distribution.

(e.g., Dee andWyckoff 2013). But this type of targeted interven-
tion targeting the tails of the productivity distribution is far rarer
than the productivity initiative – professional development –
training that targets teachers regardless of estimates of their per-
formance. Moreover, professional development is a ubiquitous
and costly strategy. A recent report (TNTP 2015) estimates that
professional development activities cost an average of $18,000
per teacher, but do not lead to systemic improvement in teacher
effectiveness, a finding that reflects the broader literature.29 Our
findings reinforce the notion that experimentation in influenc-
ing the tails of the distribution might be a fruitful approach to
upgrade the overall quality of the teacher workforce.

Chetty et al. (2014b), for instance, considered the implica-
tions of Hanushek’s (2009) hypothetical that teachers in the bot-
tom 5% of the value-added distribution be dismissed (with the
assumption that they could be replaced by teachers of aver-
age quality). Based on their findings on the impacts of teacher
quality on adult earnings, they present a back-of-the-envelope
calculation that substituting an average teacher for a bottom
5% teacher would increase the present value of average life-
time earnings of a student by $14,500. (The average class size
in Chetty et al. was 28.2, so the total net present value of the
replacement is estimated to be $407,000). Yet this, along with
the other simulations, assumes that teacher quality follows a
Gaussian distribution.30 As we report above, the distribution
of teacher effectiveness we estimate is roughly bell-shaped, but
departs notably from the Gaussian in the tails. Consistent with
this picture we find that policies that change the placement of
teachers across a wide swatch of the distribution are reasonably
well evaluated by assuming the distribution to be Gaussian, but
thatmovements within the tails are in some cases quite different.

Chetty et al. reached their conclusion about the value of
replacing a bottom 5% teacher based on the following calcula-
tion. A one standard deviation change in teacher effectiveness is
associatedwith a 1.34% change in the net present value (NPV) of
lifetime earnings, where NPV is estimated to be $522,000 2010
dollars. The authors then ask what would happen if the bottom
five percent of teachers were replaced with the median teacher.
Since the average person in the bottomfive percent of aGaussian
is 2.06 standard deviations below the mean, Chetty et al. calcu-
lated the gain to be 2.06 × 0.0134 × $522,000 = $14,500. We
present the analogous calculation for each of our six data sets in
the bottomof Table 5, empirically determining the average num-
ber of standard deviations from the mean for an average bottom

Both experimental (e.g., Garet ; Glazerman et al. ) and nonexperimental
estimates (e.g., Yoon ) suggest that efforts focused on improving the perfor-
manceof in-service teachers yield little ormixed impacts on student achievement.

See Equation () andOnlineAppendixDof theChetty et al. () study for details
about the simulation; and particularly p. , where Chetty et al. said “Under the
assumption that [value added] is normally distributed.”

five percent teacher. Not surprisingly given our findings that the
assumption of a Gaussian distribution is a close approximation
to the distribution we calculate, the Chetty et al.-type simulation
is also pretty consistent. With three of the distributions, the val-
ues of replacement are larger than the values calculated from the
Gaussian, but smaller for the other three, but the differences are
all within 10% of what would have been found with the assump-
tion of a normal distribution.

While replacing teachers under the fifth percentile with
average teachers has been proposed it has rarely been imple-
mented.31 To see the difference in a policy focused in the tails,
we do the same calculation simulating the effect of replacing a
teacher at the 2nd percentile of the distribution with a teacher at
the 12th percentile. The results are reported in the upper part of
Table 5. The importance of looking carefully at the tails demon-
strates in two ways. First, the gain from this 10 percentile move
is roughly half of the entire gain from swapping the bottom
five percent for median teachers. Thus, improving the effective-
ness of the very worst teachers might be a valuable strategy—
if there is a cost effective way to do so. Second, the differences
between the nonparametric and Gaussian estimates are much
larger here—so using an appropriate nonparametric estimator
really matters. Depending on the dataset, we find the differences
to range from 57% for STAR reading to 3% for WA reading.

The above simulation demonstrates that the effectiveness of
investments in changing teacher quality at the tails of the dis-
tribution is likely to be far larger than in the middle. Yet while
there are policy initiatives focused on the tails, the great major-
ity of investment in teachers is focused on improving the average
quality of the teacher workforce through professional develop-
ment; this despite the fact that both experimental (Garet 2008:
Glazerman et al. 2010) and nonexperimental (TNTP 2015; Yoon
2007) estimates suggest that efforts focused on improving the
performance of in-service teachers yield little or mixed impacts
on student achievement.

It is important to recognize that while the productivity of the
teacher workforce is itself a critically important societal issue,
the findings we report on the productivity of teachers may not
generalize to other sectors of the economy. In particular, there
are at least two reasons to be cautious. The first is that teach-
ing is a multifaceted and relatively complex job (Lanier 1997).
The second is that while there is growing interest in the use of
teacher evaluations for personnel policies and incentives in edu-
cation,most teachers have very high job security, especially after
being tenured (McGuinn 2010), and are compensated based on
a salary schedule, not based on performance measures. It is

 Washington DC’s recent teacher accountability policies under IMPACT may come
closest to mimicking the Chetty et al. thought experiment (see Dee and Wyckoff
).
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unclear how these differences between the public school teacher
labor market and the broader labor market might affect the dis-
tribution of marginal productivity for different types of work-
ers. Nevertheless, our findings are important as they suggest we
need more research on marginal productivity as the efficacy of
different types of investments in developing and maintaining a
high-quality workforce depend on the returns to their focus on
different points in the quality distribution.
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